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Framework

@ Fuzzy implication functions are used in fuzzy control and
approximate reasoning to model fuzzy conditionals as well as to
make inferences.

@ If we consider Zadeh’s compositional rule of inference, Modus
Ponens becomes essential in the process of managing forward
inferences.

@ Modus Ponens translated to the framework of fuzzy logic derives

into:

T(x,I(x,y)) <y forall x,ye][0,1], (MP)
where T is a continuous t-norm and / is a fuzzy implication
function.
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Modus Ponens in fuzzy logic: State of the art

@ Due to the importance of Modus Ponens in the inference process,
(MP) has been investigated by many researchers.

@ Main studies are related to implications derived from t-norms and
t-conorms: residual, (S, N)-implications, QL and D-implications.

@ Many other kinds of implication functions can be considered, in
particular implications derived from general aggregation functions.

@ Recently, Modus Ponens has been studied for two kinds of
implications derived from uninorms: RU-implications and
(U, N)-implications.
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Introduction

Uninorms

@ Uninorms were introduced in the framework of aggregation
functions, but they have been also investigated as logical
operators.

@ Uninorms have been extensively studied as generalizations of
both t-norms and t-conorms.

@ They have proved to be useful in fuzzy expert systems and also in
fuzzy logic in general.

@ Conjunctive uninorms are considered as conjunctions and the
substitution of the t-norm by a uninorm in (MP) becomes natural.
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Introduction

U-Modus Ponens

@ Substituting T by a conjunctive uninorm U, leads to the so-called
U-Modus Ponens (or also U-conditionality), recently proposed.

@ The implication function in U-Modus Ponens must satisfy some
properties fulfilled by RU-implications and (U, N)-implications.

@ U-Modus Ponens has been investigated for RU-implications.

Goal: Deal with the same property for the case of (U, N)-implications.
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Preliminaries

Fuzzy implication functions

Definition
A binary operator / : [0,1] x [0,1] — [0, 1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(1) I(x,z) > I(y,z) when x <y,forall z€[0,1].

(12) I(x,y) < I(x,z) when y < z, forall x € [0, 1].

(13) 1(0,0) = /(1,1) =1 and I(1,0) = 0.

e



Preliminaries

Uninorms

Definition
A uninorm is a two-place function U : [0,1]?> — [0, 1] associative,
commutative, increasing in each place and there exists some element

e € [0, 1], called neutral element, such that U(e, x) = x for all
x € [0, 1].

Ife=0, Uis at-conorm. If e=1, Uis a t-norm.

If e €]0, 1[, U has the following structure:
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T min < U < max

- 0 e 1
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Classes of uninorms

1 @ Uin, if U(x,y) € {x,y}in A(e)
A(e) S > Umin, Where U(x, y) = min(x, y) in A(e)
<T7 e, S)min
e > Umax, Where U(x, y) = max(x, y) in A(e)
T A(e) <T7 e7 S>max
> Uige, satisfying U(x, x) = x

0 e 1 @ Ugs, with T i S continuous
> Ugos, cOntinuous in ]0, 12

* Urep, representable
U(x,y) = h~"(h(x) + h(y))
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Idempotent uninorms

Theorem

U is an idempotent uninorm with neutral element e € [0, 1] if and only if there

exists a non increasing function g : [0,1] — [0, 1], symmetric with respect to
the identity function, with g(e) = e, such that

min(x,y) ify < g(x) or(y = g(x) and x < g*(x)),
U(x.y) = ¢ max(x,y) ify > g(x) or (y = g(x) and x > g*(x)),
xory ify = g(x) and x = g?(x),

being commutative in the points (x, y) such that y = g(x) with x = g?(x).

Notation: U = (g, €)ige-
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Representable uninorms

Definition

A uninorm U, with neutral element e € |0, 1[, is called representable if there
exists a strictly increasing function h : [0, 1] — [—o0, +0o0] (called an additive
generator of U, which is unique up to a multiplicative constant k > 0), with
h(0) = —o0, h(e) = 0 and h(1) = +oo, such that U is given by

U(x,y) = h~'(h(x) + h(y))

for all (x, y) € [0,1]?\ {(0,1),(1,0)}. We have either U(0,1) = U(1,0) = 0 or
U(,1)=U(1,0) =1.

v

Notation: U = (e, h)rep.
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Ts . 1
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U= <T1 s A T27 u, (Ra e))cos,min
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1 1 : 1
, So
e - min ------f---ooe R -------- w max
. 0 s,
u v ;
T2 . 1 .
A mlin € - H -------- —--- Mmax------
T, ' ’
0 Aoou e A 0 e vOuw 1
ucos,min Z/{COS,max

U= <T1 ) )‘a T27 u, (Ra e))COS,min U= <(Ra e)7 v, S1 y W, S2>COS,maX
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Definition

Definition
I an implication function, U a uninorm.

| satisfies the Modus Ponens property with respect to U if

Ux,I(x,y)) <y forall x,y €[0,1]. (1)

Remark

I an implication function, U a uninorm. If /'is a U-conditional then U
must be conjunctive.
If Iy n is a fuzzy implication, U" must be disjunctive.

e
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General results

Proposition

U= (T, e, S) a conjunctive uninorm, U’ = (T', €, S') a disjunctive one,
N a fuzzy negation and Iy n the corresponding (U, N)-implication. If
Iy n satisfies the U-Modus ponens respect to U, the following items
hold:

Q@ U(N(e),y)<yforally €[0,1].

Q U'(N(x),y) < eforall x,y such thate < y < x. In particular, it
mustbe U'(0,y) < eforalle<y < 1.

Q U(x,N(x)) < € forall x € [0,1]. If N has a fixed point ey then it
must be U(en, en) < €.
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General results

Proposition

U= (T, e, S) a conjunctive uninorm, U’ = (T', €, S') a disjunctive one,
N a fuzzy negation and Iy n the corresponding (U, N)-implication. If
Iy n satisfies the U-Modus ponens respect to U, the following items
hold:

Q@ U(N(e),y)<yforally €[0,1].

@ U(N(x),y) <eforallx,y such thate < y < x. In particular, it
mustbe U'(0,y) < eforalle<y < 1.

Q U(x,N(x)) < € forall x € [0,1]. If N has a fixed point ey then it
must be U(en, en) < €.

© N must be non-filling, N(x) < 1 for all x > 0.

_44
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General results

Proposition
U= (T,e, S) conjunctive, U = (T', €, S') disjunctive and locally
internal on the boundary. N a fuzzy negation and Iy y its
(U, N)-implication.
If Iy n satisfies (1) with respect to U then:
@ /tmustbe U'(0,y)=0forally <1.
@ The natural negation of Iy, y must be drastic fuzzy negation Np
given by Np(x) =0 forall x < 1.
@ U’ can not be in Umay.
@ IfU' isinUcosmax, SAY U = ((R, €),V, S1,w, S2) cos,max, then it
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General results

Proposition
U= (T,e, S) conjunctive, U = (T', €, S') disjunctive and locally
internal on the boundary. N a fuzzy negation and Iy y its
(U, N)-implication.
If Iy n satisfies (1) with respect to U then:
@ /tmustbe U'(0,y)=0forally <1.

@ The natural negation of Iy, y must be drastic fuzzy negation Np
given by Np(x) =0 forall x < 1.

@ U’ can not be in Umay.

@ IfU' isinUcosmax, SAY U = ((R, €),V, S1,w, S2) cos,max, then it
mustbew = 1.

@ IfU' is idempotent, say U = (g, €)qe, then it must be g'(0) = 1.

_44
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U-Modus Ponens for (U, N)-implications

General results

Remark

Many possibilities remain available:
@ representable uninorms, or
@ idempotent uninorms with g’(0) = 1, or
@ uninorms in Ueos,max With w = 1, or
@ uninorms in Uges min With A = 0 (A = 0 to be U’ disjunctive).

—




U-Modus Ponens for (U, N)-implications

General results

(U, N)-implication /i y depends also on N:

Proposition

U’ be a disjunctive uninorm in one of the classes given previously. If
N = Np is the drastic fuzzy negation, then I y is given by the least
fuzzy implication

1 ifx=0o0ry=1

Iy n(x,y) = lo(x,y) = {o otherwise

satisfies (1) with respect to any conjunctive uninorm U.

e
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General results

If N is continuous (the most usual case), uninorms in Ugos max €an be
also discarded.

Proposition

U= (T,e,S) conjunctive, U = (T', €', S') disjunctive. N continuous
fuzzy negation and Iy y its (U, N)-implication. If I,y x satisfies (1) with
respect to U then U’ can not be in Ucos,max-
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General results

When N is continuous, it must have a fixed point: ey.

Proposition

U= (T, e, S) conjunctive, U = (T', €', S') disjunctive. N continuous
fuzzy negation and Iy  its (U, N)-implication. Suppose Il y satisfies
the (1) with respect to U then

@ Ife < en, thenitmustbe ey < eandso € < ey < e.
@ Ife =epn, thenitmustbe ey < eandsoe =eyn < e.

v

Case € > ey is not included because, initially, there is no restriction on
the relative position of the neutral element e with respect to & > ey.
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Results with & = ey = e

Proposition
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Ponens with respect to U if and only if the following items hold:
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g'(1) = 0. Take the fuzzy negation N = g’ and let I,y n be the
corresponding (U, N)-implication. Then Iy n atisfies the U-Modus
Ponens with respect to U if and only if the following items hold:

1. g = N is non-filling

2. Ifg = N is constant in an interval [a, b with b < e then
U'(x,d'(x)) = min(x, g'(x)) for all x € [a, b].




Case U’ idempotent

Results with & = ey = e

Proposition
U= (T, e, S)min and U’ = (¢, €)qe disjunctive with g'(0) = 1 and
g'(1) = 0. Take the fuzzy negation N = g’ and let I,y n be the
corresponding (U, N)-implication. Then Iy n atisfies the U-Modus
Ponens with respect to U if and only if the following items hold:
1. g = N is non-filling
2. Ifg = N is constant in an interval [a, b with b < e then
U'(x,d'(x)) = min(x, g'(x)) for all x € [a, b].
3. If g’ = N is constant in an interval [a, b] with e < a then
U'(x,d'(x)) = min(x, g'(x)) for all x € [a, b].

_44



Case U’ idempotent

Results with e = ey = e

Proposition
U= (T, e, S)min and U’ = (¢, €)qe disjunctive with g'(0) = 1 and
g'(1) = 0. Take the fuzzy negation N = g’ and let I,y n be the
corresponding (U, N)-implication. Then Iy n atisfies the U-Modus
Ponens with respect to U if and only if the following items hold:
1. g = N is non-filling
2. Ifg = N is constant in an interval [a, b with b < e then
U'(x,d'(x)) = min(x, g'(x)) for all x € [a, b].
3. If g’ = N is constant in an interval [a, b] with e < a then
U'(x,d'(x)) = min(x, g'(x)) for all x € [a, b].
4. If g = N is strictly decreasing in an interval [a, b] with e < a then
Sy is given by the maximum in the square [a, b]?.

4



Case U’ idempotent

Results with e’ = ey < €

Proposition
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@ The case of (U, N)-implications derived from disjunctive uninorms
and fuzzy negations has been investigated.

@ Only the classes of representable uninorms, uninorms in Ueos min
with A = 0 and idempotent uninorms with g(0) = 1 are available.

@ The case of idempotent uninorms has been started with some
new results.
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Future work

@ Extend this study to the other kinds of disjunctive uninorms.

@ Deal also with other kinds of implications like h and
(h, e)-implications recently introduced by Massanet and Torrens
(2011).




Thanks for your attention!
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