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Introduction
Framework

Fuzzy implication functions are used in fuzzy control and
approximate reasoning to model fuzzy conditionals as well as to
make inferences.

If we consider Zadeh’s compositional rule of inference, Modus
Ponens becomes essential in the process of managing forward
inferences.

Modus Ponens translated to the framework of fuzzy logic derives
into:

T (x , I(x , y)) ≤ y for all x , y ∈ [0,1], (MP)

where T is a continuous t-norm and I is a fuzzy implication
function.
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Modus Ponens in fuzzy logic: State of the art

Due to the importance of Modus Ponens in the inference process,
(MP) has been investigated by many researchers.

Main studies are related to implications derived from t-norms and
t-conorms: residual, (S,N)-implications, QL and D-implications.

Many other kinds of implication functions can be considered, in
particular implications derived from general aggregation functions.

Recently, Modus Ponens has been studied for two kinds of
implications derived from uninorms: RU-implications and
(U,N)-implications.



Introduction
Modus Ponens in fuzzy logic: State of the art

Due to the importance of Modus Ponens in the inference process,
(MP) has been investigated by many researchers.

Main studies are related to implications derived from t-norms and
t-conorms: residual, (S,N)-implications, QL and D-implications.

Many other kinds of implication functions can be considered, in
particular implications derived from general aggregation functions.

Recently, Modus Ponens has been studied for two kinds of
implications derived from uninorms: RU-implications and
(U,N)-implications.



Introduction
Modus Ponens in fuzzy logic: State of the art

Due to the importance of Modus Ponens in the inference process,
(MP) has been investigated by many researchers.

Main studies are related to implications derived from t-norms and
t-conorms: residual, (S,N)-implications, QL and D-implications.

Many other kinds of implication functions can be considered, in
particular implications derived from general aggregation functions.

Recently, Modus Ponens has been studied for two kinds of
implications derived from uninorms: RU-implications and
(U,N)-implications.



Introduction
Modus Ponens in fuzzy logic: State of the art

Due to the importance of Modus Ponens in the inference process,
(MP) has been investigated by many researchers.

Main studies are related to implications derived from t-norms and
t-conorms: residual, (S,N)-implications, QL and D-implications.

Many other kinds of implication functions can be considered, in
particular implications derived from general aggregation functions.

Recently, Modus Ponens has been studied for two kinds of
implications derived from uninorms: RU-implications and
(U,N)-implications.



Introduction
Uninorms

Uninorms were introduced in the framework of aggregation
functions, but they have been also investigated as logical
operators.

Uninorms have been extensively studied as generalizations of
both t-norms and t-conorms.

They have proved to be useful in fuzzy expert systems and also in
fuzzy logic in general.

Conjunctive uninorms are considered as conjunctions and the
substitution of the t-norm by a uninorm in (MP) becomes natural.
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Substituting T by a conjunctive uninorm U, leads to the so-called
U-Modus Ponens (or also U-conditionality), recently proposed.

The implication function in U-Modus Ponens must satisfy some
properties fulfilled by RU-implications and (U,N)-implications.

U-Modus Ponens has been investigated for RU-implications.
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Introduction
U-Modus Ponens

Substituting T by a conjunctive uninorm U, leads to the so-called
U-Modus Ponens (or also U-conditionality), recently proposed.

The implication function in U-Modus Ponens must satisfy some
properties fulfilled by RU-implications and (U,N)-implications.

U-Modus Ponens has been investigated for RU-implications.

Goal: Deal with the same property for the case of (U,N)-implications.
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Preliminaries
Fuzzy implication functions

Definition
A binary operator I : [0,1]× [0,1]→ [0,1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(I1) I(x , z) ≥ I(y , z) when x ≤ y , for all z ∈ [0,1].

(I2) I(x , y) ≤ I(x , z) when y ≤ z, for all x ∈ [0,1].

(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.
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Preliminaries
Uninorms

Definition
A uninorm is a two-place function U : [0,1]2 → [0,1] associative,
commutative, increasing in each place and there exists some element
e ∈ [0,1], called neutral element, such that U(e, x) = x for all
x ∈ [0,1].

If e = 0, U is a t-conorm. If e = 1, U is a t-norm.

If e ∈]0,1[, U has the following structure:
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Classes of uninorms

T

S

A(e)

A(e)

0

e

1

e 1

Ulin, if U(x , y) ∈ {x , y} in A(e)

I Umin, where U(x , y) = min(x , y) in A(e)
〈T ,e,S〉min

I Umax, where U(x , y) = max(x , y) in A(e)
〈T ,e,S〉max

I Uide, satisfying U(x , x) = x

Ucts, with T i S continuous

I Ucos, continuous in ]0,1[2

F Urep, representable
U(x , y) = h−1(h(x) + h(y))
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Preliminaries
Idempotent uninorms

Theorem

U is an idempotent uninorm with neutral element e ∈ [0,1] if and only if there
exists a non increasing function g : [0,1]→ [0,1], symmetric with respect to
the identity function, with g(e) = e, such that

U(x , y) =


min(x , y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x , y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x),

being commutative in the points (x , y) such that y = g(x) with x = g2(x).

Notation: U ≡ 〈g,e〉ide.



Preliminaries
Representable uninorms

Definition

A uninorm U, with neutral element e ∈ ]0,1[ , is called representable if there
exists a strictly increasing function h : [0,1]→ [−∞,+∞] (called an additive
generator of U, which is unique up to a multiplicative constant k > 0), with
h(0) = −∞, h(e) = 0 and h(1) = +∞, such that U is given by

U(x , y) = h−1(h(x) + h(y))

for all (x , y) ∈ [0,1]2 \ {(0,1), (1,0)}. We have either U(0,1) = U(1,0) = 0 or
U(0,1) = U(1,0) = 1.

Notation: U ≡ 〈e,h〉rep.
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Definition
I an implication function, U a uninorm.

I satisfies the Modus Ponens property with respect to U if

U(x , I(x , y)) ≤ y for all x , y ∈ [0,1]. (1)

Remark

I an implication function, U a uninorm. If I is a U-conditional then U
must be conjunctive.
If IU′,N is a fuzzy implication, U ′ must be disjunctive.
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U-Modus Ponens for (U,N)-implications
General results

Proposition
U ≡ 〈T,e,S〉 a conjunctive uninorm, U ′ ≡ 〈T ′,e′,S′〉 a disjunctive one,
N a fuzzy negation and IU′,N the corresponding (U,N)-implication. If
IU′,N satisfies the U-Modus ponens respect to U, the following items
hold:

1 U ′(N(e), y) ≤ y for all y ∈ [0,1].

2 U ′(N(x), y) ≤ e for all x , y such that e ≤ y < x. In particular, it
must be U ′(0, y) < e for all e ≤ y < 1.

3 U(x ,N(x)) ≤ e′ for all x ∈ [0,1]. If N has a fixed point eN then it
must be U(eN ,eN) ≤ e′.

4 N must be non-filling, N(x) < 1 for all x > 0.
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Proposition
U ≡ 〈T,e,S〉 conjunctive, U ′ ≡ 〈T ′,e′,S′〉 disjunctive and locally
internal on the boundary. N a fuzzy negation and IU′,N its
(U,N)-implication.
If IU′,N satisfies (1) with respect to U then:

It must be U ′(0, y) = 0 for all y < 1.
The natural negation of IU′,N must be drastic fuzzy negation ND
given by ND(x) = 0 for all x < 1.
U ′ can not be in Umax.
If U ′ is in Ucos,max, say U ′ ≡ 〈(R,e), v ,S1, ω,S2〉cos,max, then it
must be ω = 1.
If U ′ is idempotent, say U ′ ≡ 〈g′,e′〉ide, then it must be g′(0) = 1.
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(U,N)-implication IU′,N depends also on N:

Proposition
U ′ be a disjunctive uninorm in one of the classes given previously. If
N = ND is the drastic fuzzy negation, then IU′,N is given by the least
fuzzy implication

IU′,N(x , y) = I0(x , y) =

{
1 if x = 0 or y = 1
0 otherwise,

satisfies (1) with respect to any conjunctive uninorm U.
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General results

If N is continuous (the most usual case), uninorms in Ucos,max can be
also discarded.

Proposition
U ≡ 〈T,e,S〉 conjunctive, U ′ ≡ 〈T ′,e′,S′〉 disjunctive. N continuous
fuzzy negation and IU′,N its (U,N)-implication. If IU′,N satisfies (1) with
respect to U then U ′ can not be in Ucos,max.
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When N is continuous, it must have a fixed point: eN .
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fuzzy negation and IU′,N its (U,N)-implication. Suppose IU′,N satisfies
the (1) with respect to U then

If e′ < eN , then it must be eN < e and so e′ < eN < e.
If e′ = eN , then it must be eN ≤ e and so e′ = eN ≤ e.
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Case e′ > eN is not included because, initially, there is no restriction on
the relative position of the neutral element e with respect to e′ > eN .
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Case U ′ idempotent
Results with e′ = eN = e

Proposition
U ≡ 〈T,e,S〉min and U ′ ≡ 〈g′,e′〉ide disjunctive with g′(0) = 1 and
g′(1) = 0. Take the fuzzy negation N = g′ and let IU′,N be the
corresponding (U,N)-implication. Then IU′,N atisfies the U-Modus
Ponens with respect to U if and only if the following items hold:

1. g′ = N is non-filling
2. If g′ = N is constant in an interval [a,b[ with b ≤ e then

U ′(x ,g′(x)) = min(x ,g′(x)) for all x ∈ [a,b[.
3. If g′ = N is constant in an interval [a,b] with e ≤ a then

U ′(x ,g′(x)) = min(x ,g′(x)) for all x ∈ [a,b].
4. If g′ = N is strictly decreasing in an interval [a,b] with e ≤ a then

SU is given by the maximum in the square [a,b]2.
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with λ = 0 and idempotent uninorms with g(0) = 1 are available.
The case of idempotent uninorms has been started with some
new results.
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Deal also with other kinds of implications like h and
(h,e)-implications recently introduced by Massanet and Torrens
(2011).
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Thanks for your attention!
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