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Introduction



Fuzzy implication functions

The definition of fuzzy implication function is enough flexible to allow the
existence of a huge number of fuzzy implication functions.

Definition

A binary operation I : [0,1]2 → [0,1] is said to be a fuzzy implication function if
it satisfies:

(I1) I(x , z) ≥ I(y , z) when x ≤ y , for all z ∈ [0,1].
(I2) I(x , y) ≤ I(x , z) when y ≤ z, for all x ∈ [0,1].
(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Additional properties

These operators can satisfy additional properties that come usually from
tautologies in classical logic.

1 Exchange Principle:

I(x , I(y , z)) = I(y , I(x , z)), for all x , y , z ∈ [0,1]. (EP)

2 Left-neutrality principle:

I(1, y) = y for all y ∈ [0,1]. (NP)

3 Law of left contraposition with respect to a fuzzy negation N:

I(N(x), y) = I(N(y), x), for all x , y ∈ [0,1]. (L-CP(N))

4 Law of right contraposition with respect to a fuzzy negation N:

I(x ,N(y)) = I(y ,N(x)), for all x , y ∈ [0,1]. (R-CP(N))



The need of characterization

From time to time, “new” families of fuzzy implication functions appear.
However, some time later some of them are proved to have intersection with
other old families or even they are actually the same family!

Solution
To axiomatically characterize the families of fuzzy implication functions in
order to know better their structure and behavior.
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The problem of the characterization of
(S,N)-implications with a non-continuous negation

Although many families of fuzzy implication functions have already been
characterized, there are others whose characterization remain unknown. For
instance, in

Michał Baczyński and Balasubramaniam Jayaram. On the
characterizations of (S,N)-implications. Fuzzy Sets and Systems,
158:1713-1727, 2007.

the following problem is posed

Problem
What is the characterization of (S,N)-implications generated from
non-continuous negations?



Characterization of (S,N)-implications with a
continuous fuzzy negation



Definition of (S,N)-implications

Definition
A binary operator I : [0,1]2 → [0,1] is called an (S,N)-implication if there exist
a t-conorm S and a fuzzy negation N such that

I(x , y) = S(N(x), y), x , y ∈ [0,1].

Proposition
If IS,N is a (S,N)-implication, then

(i) IS,N satisfies (NP) and (EP).
(ii) IS,N satisfies (R-CP(N)).



Characterization of (S,N)-implications with N
continuous

Theorem (Baczyński and Jayaram, 2007)
For a function I : [0,1]2 → [0,1] the following statements are equivalent:

(i) I is an (S,N)-implication generated from some t-conorm S and some
continuous fuzzy negation N.

(ii) I satisfies (I1), (EP) and I(x ,0) is a continuous fuzzy negation.
Moreover, the representation of the (S,N)-implication is unique with

N(x) = I(x ,0), x ∈ [0,1],

S(x , y) = I(RN(x), y), x , y ∈ [0,1].



Modified pseudo-inverse of a fuzzy negation

Definition (Baczyński and Jayaram, 2007)
Let N be a continuous fuzzy negation and consider the function
RN : [0,1]→ [0,1] defined by

RN(x) =
{

N(−1)(x) if x ∈ (0,1],
1 if x = 0,

where N(−1) is the pseudo-inverse of N, i.e,

N(−1)(y) = sup{x ∈ [0,1] | N(x) > y} for y ∈ [0,1].

Proposition
(i) RN is a fuzzy negation.
(ii) RN is a strictly decreasing function.
(iii) N ◦RN = id[0,1].
(iv) RN ◦ N|Ran(RN ) = id[0,1]|Ran(RN ).



Towards the characterization of
(S,N)-implications with a non-continuous fuzzy

negation



Problem 1: Properties of RN when N is
non-continuous

If N is a non-continuous negation then RN is still a fuzzy negation but
RN is not a strictly decreasing function.
The equalities N ◦RN = id[0,1] and RN ◦ N|Ran(RN ) = id[0,1]|Ran(RN ) are not
necessarily satisfied.



Result 1

If N is continuous then

RN ◦ N|Ran(RN ) = id[0,1]|Ran(RN )

If N is non-continuous we have the following result

Proposition
Let N : [0,1]→ [0,1] be a fuzzy negation and x0 ∈ [0,1], then

RN ◦ N(x0) 6= x0 ⇔ x0 6∈ Ran(RN) or x0 ∈ Ran(RN) and ∃ε > 0 such that
N|(x0−ε,x0] is a constant function and
lim

x→x+
0

N(x) 6= N(x0).



Result 1

Example

RN ◦ N(x) = x , x ∈ Ran(RN)− {0.25}.



Result 2

If N is continuous then
N ◦RN = id[0,1].

If N is non-continuous we have the following result

Proposition
Let N : [0,1]→ [0,1] be a decreasing non-constant function and y0 ∈ [0,1],
then

N ◦RN(y0) 6= y0 ⇔ y0 6∈ Ran(N) or y0 ∈ Ran(N) and ∃x0 ∈ [0,1]
such that N(x0) = y0 and ∃ε > 0 such that
N|(x0−ε,x0] is a constant function and

lim
x→(x0−ε)+

N(x) = N(x0) 6= N(x0 − ε).



Result 2

Example

N ◦RN(y) = y , y ∈ Ran(N)− {0.25}.



Problem 2: Non-unicity of S

Example
Let us consider the following non-continuous fuzzy negation

N(x) =
{

1− x if x ∈ [0,0.25] ∪ [0.75,1],
0.25 if x ∈ (0.25,0.75).

and the following continuous t-conorms

SM(x , y) = max(x , y), (x , y) ∈ [0,1]2,

S(x , y) =
{

2xy + 0.5x + 0.5y − 0.125 if x , y ∈ (0.25,0.75),
max(x , y) Otherwise.

Then,

ISM ,N(x , y) = IS,N(x , y) =
{

max(0.25, y) if x , y ∈ (0.25,0.75),
max(1− x , y) Otherwise.



Problem 2: Non-unicity of S

Proposition
Let N1, N2 be two fuzzy negations and S1, S2 two t-conorms. Then,

IS1,N1(x , y) = IS2,N2(x , y)
(x , y) ∈ [0,1]2. ⇔ N1(x) = N2(x) = N(x), x ∈ [0,1],

S1(x , y) = S2(x , y), (x , y) ∈ Ran(N)× [0,1].



Problem 2: Non-unicity of S
Example (cont.)

The only values of the t-conorms that used for the definition of the
(S,N)-implication are:

Moreover, even when we consider a function that is not a t-conorm

F (x) =
{

1 x , y ∈ (0.25,0.75),
max(x , y) Otherwise,

we can have that

ISM ,N(x , y) = IS,N(x , y) = IF ,N(x , y), (x , y) ∈ [0,1]2.



Problem 2: Non-unicity of S
Example (cont.)

The only values of the t-conorms that used for the definition of the
(S,N)-implication are:

Moreover, even when we consider a function that is not a t-conorm

F (x) =
{

1 x , y ∈ (0.25,0.75),
max(x , y) Otherwise,

we can have that

ISM ,N(x , y) = IS,N(x , y) = IF ,N(x , y), (x , y) ∈ [0,1]2.



Problem 2: Non-unicity of S



Equivalence relation

Definition
Let N be a fuzzy negation and S1, S2 two t-conorms. Then we define the
relation ≡N as

S1 ≡N S2 ⇔ IS1,N(x , y) = IS2,N(x , y), (x , y) ∈ [0,1]2.

Lemma
≡N is an equivalence relation.
If N is continuous then S1 ≡N S2 ⇔ S1(x , y) = S2(x , y), (x , y) ∈ [0,1]2.



Problem 3: Construction of a representative

Definition
Let I : [0,1]2 → [0,1] be a fuzzy implication function and N a fuzzy negation.
Let us define a function SI,N : A× [0,1]→ [0,1] as follows:

SI,N(x , y) = I(RN(x), y), (x , y) ∈ A× [0,1],

where A = {x ∈ Ran(N) | N ◦RN(x) = x}.



Properties of SI,N

Proposition
Let I : [0,1]2 → [0,1] be a fuzzy implication function and N a fuzzy negation
with only one point of discontinuity. Then

(i) SI,N(•, y) is increasing in x ∈ A for y ∈ [0,1]⇔ I(•, y) is decreasing in
x ∈ Ran(RN) for y ∈ [0,1].

(ii) SI,N(x , •) is increasing in y ∈ [0,1] for x ∈ A⇔ I(x , •) is increasing in
y ∈ [0,1] for x ∈ Ran(RN).

(iii) SI,N(x , y) = SI,N(y , x) for x , y ∈ A⇔ I satisfies L-CP(RN ) for x , y ∈ A.
(iv) SI,N(x ,0) = x for x ∈ A⇔ I(1, x) = x for x ∈ A.
(v) SI,N(x ,SI,N(y , z)) = SI,N(y ,SI,N(x , z)) for x , y ∈ A and z ∈ [0,1]⇔

I(x , I(y , z)) = I(y , I(x , z)) for x , y ∈ Ran(RN) and z ∈ [0,1].



Problem 3: Construction of a representative

In order to find a representative of the corresponding class of t-conorms, we
need to find the extension of SI,N to [0,1]2.



Characterization of (S,N)-implications with a
fuzzy negation with only one point of

discontinuity and continuous t-conorms in the
class of the maximum t-conorm



Equivalence class of SM

Let N be a fuzzy negation with only one point of discontinuity x0. Depending
on the type of discontinuity we have different cases:

1. If N is such that then, the class [SM ]N consist of
t-conorms that are equal to SM in
the following region



Equivalence class of SM
By the commutativity of the t-conorms and by continuity we can consider
t-conorms that are equal to SM in the following region

Now, by the representation theorem of continuous t-conorms we obtain the
following result.

Proposition
Let N be a fuzzy negation with one point of discontinuity x0 such that
N(x0) = N(x−0 ) 6= N(x+

0 ). Then,

S ≡N SM ⇔ S(x , y) =

{
a + (b − a) · S̃

(
x−a
b−a ,

y−a
b−a

)
if (x , y) ∈ [a,b]2,

max(x , y) Otherwise,

where a = N(x+
0 ), b = N(x0) and S̃ is a continuous t-conorm.



Equivalence class of SM

2. For any other N such that N(x0) coincides with N(x−0 ) or N(x+
0 ), then the

class [SM ]N consist of t-conorms that are equal to SM in one of the
following regions:

Analogously to the previous case we obtain the same result.



Equivalence class of SM
3. For any other N such that N(x0) does not coincide with N(x−0 ) or N(x+

0 )
we have that

Proposition
Let N be a fuzzy negation with one point of discontinuity x0 such that
N(x0) = N(x+

0 ) 6= N(x−0 ). Then,

S ≡N SM ⇔ S(x , y) =


a + (c − a) · S1

(
x−a
c−a ,

y−a
c−a

)
if (x , y) ∈ [a, c]2,

c + (b − c) · S2

(
x−c
b−c ,

y−c
b−c

)
if (x , y) ∈ [c,b]2,

max(x , y) Otherwise,

where a = N(x+
0 ), c = N(x0), b = N(x−0 ) and S1, S2 are two continuous

t-conorms.



Characterization

Theorem
For a function I : [0,1]2 → [0,1] the following statements are equivalent:

(i) I is an (S,N)-implication with a negation N with one point of discontinuity
and a continuous t-conorm S ∈ [SM ]N .

(ii) I satisfies:
1. NI is a fuzzy negation with one point of discontinuity.
2. I(x , I(y , z)) = I(y , I(x , z)) for x , y ∈ Ran(RI) and z ∈ [0, 1].
3. I(x1, y) ≥ I(x2, y) when x1, x2 ∈ Ran(RI) and x1 ≤ x2 for all y ∈ [0, 1].
4. I(x , y1) ≤ I(x , y2) when y1, y2 ∈ [0, 1] and y1 ≤ y2 for all x ∈ A.
5. If NI(x) = NI(x̃) for x̃ ∈ [x , x + ε) and ε > 0⇒ I(x , y) = I(x̃ , y) for y ∈ [0, 1].
6. I(RI(x), x) = x for x ∈ A.

In this case N(x) = I(x ,0).



Conclusions and future Work



Conclusions

The aim of our work was to study the open problem of the characterization of
(S,N)-implications when N is a non-continuous negation.

In this sense, we have provided some steps to follow in order to achieve the
characterization.

Although most of our results are valid in a more general situation, we provide
a complete characterization in the case when N is a fuzzy negation with one
point of discontinuity and S is the maximum t-conorm.
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Future work

What remains to be solved to characterize this class of implications:
The case in which S is any continuous t-conorm.

Consider negations with more than one point of discontinuity.

The case in which S is a non-continuous t-conorm.
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Thank you for your attention!


	Introduction
	Fuzzy Implications functions
	Additional Properties
	The need of characterization

	Characterization of (S,N)-implications with a continuous fuzzy negation
	Towards the characterization of (S,N)-implications with a non-continuous fuzzy negation
	Problem 1: Properties of RN when N is non-continuous
	Problem 2: Non-unicity of S
	Problem 3: Construction of a representative

	Characterization of (S,N)-implications with a fuzzy negation with only one point of discontinuity and continuous t-conorms in the class of the maximum t-conorm
	Conclusions and future Work

