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Introduction

Fuzzy logics with a finite number of truth values are a great tool to
modelize linguistic opinions given by experts. The truth values can be
always medelled by a discrete chain.

Very Bad Bad Good Very Good

0 1 2 3

We focused on the study of some discrete fuzzy operators: discrete
uninorms and some derived families of fuzzy implication functions.
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Introduction Some notation and definitions

Ln = {0, 1, ..., n}
F : L2

n → Ln is idempotent if and only if F (x , x) = x for all x ∈ Ln.

F : L2
n → Ln is conservative if and only if F (x , y) ∈ {x , y} for all

(x , y) ∈ L2
n.
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Uninorms

Definition

A discrete uninorm is a function U : L2
n → Ln which is:

Associative.

Commutative.

Increasing in each variable.

Has a neutral element x ∈ Ln.
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Uninorms Characterization of Idempotent Uninorms

The following results were presented in 1

Definition

A linear ordering � on Ln is said to be single-peaked if for any a, b, c ∈ Ln
such that a < b < c we have b ≺ a or b ≺ c .

1M. Couceiro, J. Devillet, and J.-L. Marichal, “Characterizations of idempotent
discrete uninorms,” Fuzzy Sets and Systems, vol. 334, pp. 60–72, 2018.
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Figure: Representation of 1 ≺ 0 ≺ 2 ≺ 3 ≺ 4 and 3 ≺ 1 ≺ 2 ≺ 4 ≺ 0.
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Uninorms Characterization of Idempotent Uninorms

Theorem

A function F : L2
n → Ln is an idempotent discrete uninorm if and only if

there exists a single-peaked linear ordering � such that F = max� where
max� denotes the maximum operation with respect to �.

Idempotent uninorms are conservative.
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RU and (U,N)-implications

Definition

A discrete implication is a function I : L2
n → Ln which is:

Decreasing in the first component.

Increasing in the second component.

I (0, 0) = I (n, n) = n and I (n, 0) = 0.
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RU and (U,N)-implications

Definition

Given a conjunctive uninorm U : L2
n → Ln the binary operator

IU(x , y) = max{z ∈ Ln | U(x , z) ≤ y}, x , y ∈ Ln

is called a RU-implication

U is conjuctive if U(n, 0) = 0.
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RU and (U,N)-implications

Definition

Given a disjuctive uninorm U : L2
n → Ln the binary operator

IU,Nc (x , y) = U(n − x , y)

is called a (U,Nc)-implication.

U is disjunctive if U(n, 0) = n.
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Known Characterizations

This result was presented in 2

Proposition

Given I : L2
n → Ln a function and e ∈ Ln with e > 0. The following

statements are equivalent:

(1) I is a RU-implication derived from a discrete idempotent uninorm
with neutral element e.

(2) I satisfies

• Increasing in the second component.
• Exchange principle (EP) and property (OPe).
• I (x , x) ≥ x for each x ≥ e.
• I (x , x − 1) < x for each 0 < x < e.

(EP): I (x , I (y , z)) = I (y , I (x , z)).

(OPe): I (x , y) ≥ e ⇔ x ≤ y .
2M.Mas, G.Mayor,M.Monserrat, and J. Torrens, “Residual implications from discrete

uninorms. a characterization,” in Enric Trillas: A Passion for Fuzzy Sets: A Collection of
RecentWorks on Fuzzy Logic, L.Magdalena, J. L. Verdegay, and F. Esteva, Eds. Cham:
Springer International Publishing, 2015, pp. 27–40.
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Known Characterizations

The following characterization is new but it is analogous to the [0, 1] case
presented in3.

Theorem

Given I : L2
n → Ln a function. The following statements are equivalent:

(1) I is a (U,Nc)-implication generated by a discrete idempotent uninorm
with neutral element 0 < e < n.

(2) I satisfies

(a) I (x , z) ≥ I (y , z) for each x , y , z ∈ Ln such that x ≤ y .
(b) I (0, 0) = n.
(c) (EP).
(d) I (x , e) = n − x for some e ∈]0, n[.
(e) I (n − x , x) = x for each x ∈ Ln.

(EP): I (x , I (y , z)) = I (y , I (x , z)).

3M. Baczynski and B. Jayaram, “(U, N)-implications and their characterizations,”
Fuzzy Sets and Systems, vol. 160, no. 14, pp. 2049–2062, 2009.
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Adrià Tobar Nicolau September 12th, 2019



Known Characterizations New Characterizations

Theorem

A function I : L2
n → Ln is a RU-implication derived from a discrete

idempotent uninorm if and only if there exists a single-peaked linear
ordering � with n � 0 such that:

I (x , y) = max{z ∈ Ln | max
�

(x , z) ≤ y}

=

{
max{z ∈ [0, y ] | z � x} if x > y ,

max{z ∈ [e, n] | z ≤ y or z � x} if x ≤ y .
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Known Characterizations New Characterizations

Theorem

A function I : L2
n → Ln is a (U,Nc)-implication if and only if there exists a

single-peaked linear ordering � such that I (x , y) = max�(n − x , y).
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Contour plot

The contour plot of a function F : L2
n → Ln is a graphical representation of

the common values of the function.

Example

Figure: Contour plot of max(x , y) on L2
4.
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Algorithms

With the results obtained we can identify each uninorm with a
single-peaked ordering and each RU and (U,Nc)-implication with the
idempotent uninorm that derives it.

With this information in mind, we made algorithms with different
utilities.
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Algorithms

Algorithms

1 Generator of single-peaked orderings.

2 Ordering from an idempotent uninorm.

3 Ordering from an idempotent uninorm given the RU or
(U,Nc)-implication.

4 Contour plot of an idempotent uninorm given the associated
ordering.4

5 Contour plot of a (U,Nc)-implication given the associated ordering.

6 (Claim) Contour plot of a RU-implication given the associated
ordering.

4M. Couceiro, J. Devillet, and J.-L. Marichal, “Characterizations of idempotent
discrete uninorms,” Fuzzy Sets and Systems, vol. 334, pp. 60–72, 2018.
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Algorithms

UU,Nc RU

Associated
ordering

Contour plot

Figure: Algorithms diagram.
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Algorithms

Algorithm 1: Ordering from an idempotent uninorm

Input: Idempotent uninorm U : L2
n → Ln

Output: Linear ordering associated U
1 x = 0, y = n;
2 for i ← n to 1 by −1 do
3 ai = U(x , y);
4 if ai == x then
5 x = x + 1

6 else
7 y = y − 1

8 a0 = x ;
9 return {a0, ..., an}

The algorithm compares the values of Ln to see how are they ordered.
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Algorithms

Example

We have an idempotent uninorm U : L2
8 → L8 given by:

U(x , y) =

{
min(x , y) if x + y ≤ 8,
max(x , y) if x + y > 8.

Using the algorithm we obtain the associated ordering:

4 ≺ 5 ≺ 3 ≺ 6 ≺ 2 ≺ 7 ≺ 1 ≺ 8 ≺ 0

With the associated ordering we can make the contour plot.
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Algorithms

Algorithm 2: Contour plot of an idempotent uninorm.

Input: Single-peaked ordering ORD = {a0, ..., an}
Output: Contour plot of U

1 Set C0 = {a0};
2 for k ← 1 to n do
3 Ck = {ak} ∪ Ck−1;
4 Connect the pairs of points (x , y), (u, v) from C 2

k \ C 2
k−1 with

x = u or y = v closer to each other, these points have value ak ;
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Algorithms

C_0={4}

k=1

C_1={4,5}

C_1^2\C_0^2={(4,5),(5,5),(5,4)}

Connect:

(4,5) with (5,5)

(5,5) with (5,4)

k=2

C_2={4,5,3}

C_2^2\C_1^2={(3,5),(3,4),(3,3),(4,3),(5,3)}

Connect:

(3,5) with (3,4)

(3,4) with (3,3)

(3,3) with (4,3)

(4,3) with (5,3)
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Algorithms

Figure: Contour plot of U.
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Algorithms

If we have a RU or (U,Nc)-implication we could do a similar process
and obtain the ordering, the idempotent uninorm and the contour
plots.
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Algorithms

A brief explanation of the contour plot of a RU-implication algorithm.
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Algorithms

Main ideas:

RU-implications satisfy the (OPe) property, as a consequence we can
divide the contour plot in two pieces lower and upper triangle.

The structure of the RU-implicaction is a composition of pilars.

Definition

Given I an RU-implication. We name pilar of the lower triangle (resp.
upper) of a contour plot of pilars of I to each polygon that has a point
(x , y) with x − 1 = y and x > e (resp x = y and x < e). We call width of
the pilar to the number of points of this kind that it contains.
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Algorithms

Example

We can see the points in the RU-implication with associated ordering
3 ≺ 4 ≺ 2 ≺ 1 ≺ 5 ≺ 0:

e

Adrià Tobar Nicolau September 12th, 2019



Algorithms

Once we know the width of each pilar (not proven) we can build the
contour plot as follows:

Figure: Two steps of the process to build the contour plot of the upper triangle of
the RU-implication with associated ordering ORD = {5, 4, 6, 7, 3, 2, 8, 9, 1, 0}.
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Algorithms

Figure: Two steps of the process to build the contour plot of the lower triangle of
the RU-implication with associated ordering ORD = {5, 4, 6, 7, 3, 2, 8, 9, 1, 0}.
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Some conclusions

With this work we have

Obtained new characterizations for RU and (U,Nc)-implications.

Created algorithms to

Obtain the associated ordering of uninorms and implications derived.
Make the contour plot of some functions.
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Some conclusions

Future work:

Prove the correctness of the last algorithm.

Expand this work to other families of functions.
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Adrià Tobar Nicolau September 12th, 2019


	Introduction
	Some notation and definitions

	Uninorms
	Characterization of Idempotent Uninorms

	RU and (U,N)-implications
	Known Characterizations
	New Characterizations

	Contour plot
	Algorithms
	Some conclusions
	THE END

