Graphical Characterization of Discrete RU and (U,N)-Implications Derived from Idempotent Uninorms

Adrià Tobar Nicolau

Sebastià Massanet Massanet, Joan Torrens Sastre

University of the Balearic island SCOPIA

September 12th, 2019

Introduction

Fuzzy logics with a finite number of truth values are a great tool to modelize linguistic opinions given by experts. The truth values can be always medelled by a discrete chain.

Very Bad	Bad	Good	Very Good
\downarrow		\downarrow	
0	1	2	3

We focused on the study of some discrete fuzzy operators: discrete uninorms and some derived families of fuzzy implication functions.

Some notation and definitions

- $L_n = \{0, 1, ..., n\}$
- $F: L_n^2 \to L_n$ is idempotent if and only if F(x, x) = x for all $x \in L_n$.
- $F: L_n^2 \to L_n$ is conservative if and only if $F(x, y) \in \{x, y\}$ for all $(x, y) \in L_n^2$.

Uninorms

A discrete uninorm is a function $U: L_n^2 \to L_n$ which is:

- Associative.
- Commutative.
- Increasing in each variable.
- Has a neutral element $x \in L_n$.

Characterization of Idempotent Uninorms

The following results were presented in ¹

Definition

A linear ordering \leq on L_n is said to be *single-peaked* if for any $a, b, c \in L_n$ such that a < b < c we have $b \prec a$ or $b \prec c$.

¹M. Couceiro, J. Devillet, and J.-L. Marichal, "Characterizations of idempotent discrete uninorms," Fuzzy Sets and Systems, vol. 334, pp. 60–72, 2018.

Adrià Tobar Nicolau

Figure: Representation of $1 \prec 0 \prec 2 \prec 3 \prec 4$ and $3 \prec 1 \prec 2 \prec 4 \prec 0$.

Theorem

A function $F : L_n^2 \to L_n$ is an idempotent discrete uninorm if and only if there exists a single-peaked linear ordering \leq such that $F = \max_{\leq}$ where \max_{\leq} denotes the maximum operation with respect to \leq .

Idempotent uninorms are conservative.

RU and (U,N)-implications

A discrete implication is a function $I: L_n^2 \to L_n$ which is:

- Decreasing in the first component.
- Increasing in the second component.

•
$$I(0,0) = I(n,n) = n$$
 and $I(n,0) = 0$.

Given a conjunctive uninorm $U: L_n^2 \to L_n$ the binary operator

$$I_U(x,y) = \max\{z \in L_n \mid U(x,z) \le y\}, \ x,y \in L_n$$

is called a RU-implication

• U is conjuctive if U(n, 0) = 0.

Given a disjuctive uninorm $U: L_n^2 \to L_n$ the binary operator

$$I_{U,N_c}(x,y) = U(n-x,y)$$

is called a (U, N_c) -implication.

• U is disjunctive if U(n, 0) = n.

Known Characterizations

This result was presented in ²

Proposition

Given $I : L_n^2 \to L_n$ a function and $e \in L_n$ with e > 0. The following statements are equivalent:

- (1) I is a RU-implication derived from a discrete idempotent uninorm with neutral element e.
- (2) I satisfies
 - Increasing in the second component.
 - Exchange principle (EP) and property (OP_e) .
 - $I(x,x) \ge x$ for each $x \ge e$.
 - *I*(*x*,*x*−1) < *x* for each 0 < *x* < *e*.

(EP):
$$I(x, I(y, z)) = I(y, I(x, z)).$$

• (OP_e) : $I(x, y) \ge e \Leftrightarrow x \le y$.

²M.Mas, G.Mayor,M.Monserrat, and J. Torrens, "Residual implications from discrete uninorms. a characterization," in Enric Trillas: A Passion for Fuzzy Sets: A Collection of RecentWorks on Fuzzy Logic, L.Magdalena, J. L. Verdegay, and F. Esteva, Eds. Cham: Springer International Publishing, 2015, pp. 27–40.

Adrià Tobar Nicolau

The following characterization is new but it is analogous to the [0, 1] case presented in³.

Theorem

Given $I : L_n^2 \to L_n$ a function. The following statements are equivalent:

- (1) I is a (U, N_c) -implication generated by a discrete idempotent uninorm with neutral element 0 < e < n.
- (2) I satisfies

• (EP):
$$I(x, I(y, z)) = I(y, I(x, z)).$$

³M. Baczynski and B. Jayaram, "(U, N)-implications and their characterizations," Fuzzy Sets and Systems, vol. 160, no. 14, pp. 2049–2062, 2009.

Adrià Tobar Nicolau

September 12th, 2019

New Characterizations

Theorem

A function $I : L_n^2 \to L_n$ is a RU-implication derived from a discrete idempotent uninorm if and only if there exists a single-peaked linear ordering \leq with $n \leq 0$ such that:

$$I(x, y) = \max\{z \in L_n \mid \max_{\leq} (x, z) \leq y\}$$
$$= \begin{cases} \max\{z \in [0, y] \mid z \succ x\} & \text{if } x > y, \\ \max\{z \in [e, n] \mid z \leq y \text{ or } z \leq x\} & \text{if } x \leq y. \end{cases}$$

Theorem

A function $I : L_n^2 \to L_n$ is a (U, N_c) -implication if and only if there exists a single-peaked linear ordering \leq such that $I(x, y) = \max_{\leq} (n - x, y)$.

Contour plot

The contour plot of a function $F : L_n^2 \to L_n$ is a graphical representation of the common values of the function.

Example

Figure: Contour plot of max(x, y) on L_4^2 .

Algorithms

- With the results obtained we can identify each uninorm with a single-peaked ordering and each RU and (U, N_c) -implication with the idempotent uninorm that derives it.
- With this information in mind, we made algorithms with different utilities.

Algorithms

- 1 Generator of single-peaked orderings.
- 2 Ordering from an idempotent uninorm.
- 3 Ordering from an idempotent uninorm given the RU or (U, N_c) -implication.
- ⁴ Contour plot of an idempotent uninorm given the associated ordering.⁴
- 5 Contour plot of a (U, N_c) -implication given the associated ordering.
- 6 (Claim) Contour plot of a RU-implication given the associated ordering.

⁴M. Couceiro, J. Devillet, and J.-L. Marichal, "Characterizations of idempotent discrete uninorms," Fuzzy Sets and Systems, vol. 334, pp. 60–72, 2018.

Adrià Tobar Nicolau

September 12th, 2019

Figure: Algorithms diagram.

Algorithms

Algorithm 1: Ordering from an idempotent uninorm

Input: Idempotent uninorm $U: L_n^2 \to L_n$ **Output:** Linear ordering associated U 1 x = 0, y = n;**2** for $i \leftarrow n$ to 1 by -1 do $a_i = U(x, y);$ 3 if $a_i == x$ then Δ x = x + 15 else 6 y = y - 17 $a_0 = x;$ 8 9 return $\{a_0, ..., a_n\}$

• The algorithm compares the values of L_n to see how are they ordered.

Example

We have an idempotent uninorm $U: L_8^2 \to L_8$ given by:

$$U(x,y) = \begin{cases} \min(x,y) & \text{if } x+y \leq 8, \\ \max(x,y) & \text{if } x+y > 8. \end{cases}$$

Using the algorithm we obtain the associated ordering:

$$4 \prec 5 \prec 3 \prec 6 \prec 2 \prec 7 \prec 1 \prec 8 \prec 0$$

With the associated ordering we can make the contour plot.

Algorithm 2: Contour plot of an idempotent uninorm.

Input: Single-peaked ordering $ORD = \{a_0, ..., a_n\}$ Output: Contour plot of U1 Set $C_0 = \{a_0\}$; 2 for $k \leftarrow 1$ to n do 3 $C_k = \{a_k\} \cup C_{k-1}$; 4 Connect the pairs of points (x, y), (u, v) from $C_k^2 \setminus C_{k-1}^2$ with x = u or y = v closer to each other, these points have value a_k ;

C_0={4}
k=1
C_1={4,5}
C_1^2\C_0^2={(4,5),(5,5),(5,4)}
Connect: (4,5) with (5,5) (5,5) with (5,4)
k=2
C_2={4,5,3}
$C_2^2 \subset 1^2 = \{(3,5), (3,4), (3,3), (4,3), (5,3)\}$
Connect:
(3,5) with (3,4)
(3,4) with (3,3)
(3,3) with (4,3)
(4,3) with (5,3)

•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•
•	•	•	•	•	ł	•	•	•
•	•	•	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
• • •	•	• • •	•	• • •	•	•	•	•
• • •	• • • •	• • •	•	• • •	•	• • • •	• • •	• • •
• • • •	• • • •	• • • •	•	•	•	• • • •	• • • •	• • • •
• • • •	• • • • •	• • • • • •	•	•		• • • • •	• • • • • •	• • • •
• • • • •	• • • •	• • • •		•		• • • •	• • • •	• • • •

Figure: Contour plot of U.

• If we have a RU or (U, N_c) -implication we could do a similar process and obtain the ordering, the idempotent uninorm and the contour plots. A brief explanation of the contour plot of a RU-implication algorithm.

Main ideas:

- RU-implications satisfy the (*OP_e*) property, as a consequence we can divide the contour plot in two pieces lower and upper triangle.
- The structure of the RU-implicaction is a composition of pilars.

Definition

Given I an RU-implication. We name *pilar of the lower triangle* (resp. upper) of a contour plot of pilars of I to each polygon that has a point (x, y) with x - 1 = y and x > e (resp x = y and x < e). We call width of the pilar to the number of points of this kind that it contains.

Example

We can see the points in the RU-implication with associated ordering $3\prec 4\prec 2\prec 1\prec 5\prec 0$:

Once we know the width of each pilar (not proven) we can build the contour plot as follows:

Figure: Two steps of the process to build the contour plot of the upper triangle of the RU-implication with associated ordering $ORD = \{5, 4, 6, 7, 3, 2, 8, 9, 1, 0\}$.

Algorithms

Figure: Two steps of the process to build the contour plot of the lower triangle of the RU-implication with associated ordering $ORD = \{5, 4, 6, 7, 3, 2, 8, 9, 1, 0\}$.

Some conclusions

With this work we have

- Obtained new characterizations for RU and (U, N_c) -implications.
- Created algorithms to
 - Obtain the associated ordering of uninorms and implications derived.
 - Make the contour plot of some functions.

Future work:

- Prove the correctness of the last algorithm.
- Expand this work to other families of functions.

THE END

September 12th, 2019