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Abstract—Floods are major natural disasters which cause
deaths and material damages every year. Monitoring these
events is crucial in order to reduce both the affected people
and the economic losses. In this work we train and test
three different Deep Learning segmentation algorithms to
estimate the water area from river images, and compare their
performances. We discuss the implementation of a novel data
chain aimed to monitor river water levels by automatically
process data collected from surveillance cameras, and to give
alerts in case of high increases of the water level or flooding.
We also create and openly publish the first image dataset for
river water segmentation.
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I. INTRODUCTION

Floods report global annual economic losses of $96 billion
[1]. They are mainly due to river water overflows, which
are caused either by heavy precipitations or by rapid snow
melting. To improve river monitoring and early warnings,
video cameras can be installed in riverbeds to assess the
water level status. The most straightforward way to visually
determine if an alert threshold is reached is to use static
cameras pointed toward the riverbed and compare the water
level against historical observations. However, the manual
monitoring of video cameras is very costly. In this work,
we propose to use a water segmentation technique to analyze
video streams in real-time in order to automatically detect
anomalies such as sudden water extend increases. Hence,
we train and test three different Deep Learning algorithms
for the task of water segmentation and compare their per-
formances.

In Section II we make a brief summary of computer vision
algorithms for flood prevention and detection, together with
object segmentation algorithms. In Section III we describe
the three algorithms used to perform the water segmentation,
while in Section IV we introduce the dataset created for
water segmentation. Section V is devoted to the explanation
of the evaluations carried out to compare the selected
algorithms, and of the performance metrics used. Also, we
discussion the obtained results and the potential use of this
tool to implement early warning in case of floods. Finally, in

Section we present our conclusions and outline future works.

II. RELATED WORK

The incremental usage of surveillance cameras in areas
prone to natural disasters has raised interest in such events in
the scientific community, especially in the computer vision
[2] domain.Background subtraction techniques together with
morphological operations and color probability has been
used to determine water presence in videos [3]. When it
comes to static images, most algorithms are based on light,
texture and color features, and on clustering or classification
models to segment the regions containing water [4]. The
main drawback of these algorithms is the usage of hand-
crafted features which work well only the specific context
in which they were created, because they are dependent
on image characteristics such as lighting conditions, water
color, etc. Moreover, the comparison among such algorithms
is difficult because all previous studies are evaluated on non-
publicly-available data.

For the water segmentation task we investigate the use
of Artificial Neural Networks, which are composed by a
collection of connected computational units called neurons.
The connection of several neurons forms a neural network,
which is characterized by a set of weights (one for each
connection) and biases (one for each neuron). Weights
and biases are the parameters that define the differentiable
function representing the neural network, and they are gen-
erally learned through a supervised approach. The neural
network is commonly organized in layers, where the greater
number of layers enable for more complex models. When
the networks are composed by more than one layer they
are referred as Deep Neural Networks and they are part of
the Deep Learning family of machine learning algorithms.
Deep Learning methods have been applied in many different
fields such as medicine and medical diagnosis, data mining
or pattern recognition.

In the last few years, the breakthrough of Deep Learning
has stirred the field of computer vision. Recently, an algo-
rithm based on deep features was introduced to determine
the presence of flood in images from social media [5].
The results reported are promising, however the output is



a probability of the image containing evidence of a flood.
Therefore, this algorithm can only be used once the disaster
has already occurred and does not support flood monitoring.

Semantic segmentation of images is the process of clas-
sifying with a semantic class every pixel of an image
according to the human perception. Semantic segmentation
has been a classic topic in computer vision, which has seen
great advances through the application of Deep Learning
algorithms. Initially, algorithms that performed pixel-wise
labeling through visual features were introduced [6], [7].
Then, fully convolutional networks were successfully ap-
plied to the problem of semantic segmentation, improving
performances over previous methods. As a general rule,
deeper networks extract higher semantic information but at
the same time they lose pixel location information. Several
techniques have been studied for solving this drawback, such
as bilinear interpolation [8], unpoooling operations [9], [8]
or skip-layers, which combine fine information from early
layers with coarse information from deeper layers [10], [11].
Algorithms based on Adversarial Networks have also been
applied to segmentation problems [12], [13].

Despite the advances of Deep Learning semantic segmen-
tation algorithms, to the best of our knowledge they have
not been applied to the problem of water identification in
images, yet. In this paper, we train three different state-
of-the-art algorithms [10], [11], [12] on a novel publicly
available dataset of river images, which we introduce in
Section IV.

III. SEMANTIC SEGMENTATION ALGORITHMS

In order to anticipate floods caused by water overflow
in rivers, we propose to automatically detect an increase in
river water levels through water segmentation from videos
taken by surveillance cameras installed near riverbeds. The
algorithm outputs a water percentage, which can be mapped
to the water level increase. When such percentage goes
above a certain threshold, which is computed from historical
observations, a warning can be triggered. Therefore, it is
crucial to achieve a fine water segmentation in order to
perceive variations in water levels between frames in a time
series. Convolutional Neural Networks (CNN) typically use
subsampling to keep filters small and to reduce computa-
tional costs. By doing so, the output feature map from deeper
layers is reduced, resulting in an segmentation prediction
of a smaller size of the input image. Early algorithms
based on CNN for semantic segmentation were normally
composed by a CNN phase to output a fixed size coarse
segmentation map, followed by an upsampling algorithm,
and in some cases a refinement phase. This algorithms
were not trainable end-to-end and could only work with
images of a fixed input size due to the presence of fully
connected layers operating with a fixed sized input. Later,
Fully Convolutional Networks (FCN) were introduced to
solve the problem of semantic segmentation [10], [14],

[11]. Using a fully convolutional network allows to process
input images of variable size. In order to do so, fully
connected layers are transformed into convolutions with
kernels which cover the entire input region. Moreover, in
this architectures upsampling layers were also introduced to
obtain an output of the same resolution of the input and
skip layers, which combine finer information from earlier
layers with semantically more relevant information from
deeper layers, making the whole algorithm trainable end-
to-end. Given the advantages of FCN we have chosen two
stat-of-the-art algorithms [10], [11] based on this technique
which have reported top performances in well known seg-
mentation datasets such as PASCAL [15] and CamVid [16].
Additionally, we compare the performances obtained with
a segmentation algorithm based on Conditional Adversial
Networks [12], which has shown very good results in several
computer vision tasks, including semantic segmentation. To
the best of our knowledge this algorithm has not yet been
quantitatively compared with FCN segmentation algorithms.

Next, we briefly explain the three different algorithms
chosen for the task:

1) Fully convolutional networks for semantic segmenta-
tion (FCN-8s) [10]: One of the first proposed FCN for
semantic segmentation, adapting contemporary classifica-
tion networks such as AlexNet [17], VGGnet [18] and
GoogLeNet [19] into FCN. To produce dense predictions
they propose to do bilinear interpolation and upsampling
using convolutions with an input stride of 1/f , where f
is the factor needed in order to reverse the forward and
backward passes of the convolution. The deconvolutional
filters are also learned. Skip layers are added to combine
the prediction layer with previous layers with finer strides 1.

2) Fully Convolutional DenseNets for Semantic Segmen-
tation (Tiramisu) [11]: Similarly to FCN8-s, in Tiramisu a
CNN network proposed for image classification is adapted
into a FCN network with skip and upsampling layers to
perform semantic segmentation. However, Tiramisu is based
on an CNN architecture called DenseNet which was first
introduced in [20]. This architecture is built from a series
of dense blocks that are iterative concatenation of previous
feature maps, naturally introducing skip connections and
multi-scale supervision. Additionally, upsampling operations
called transition up are added to recover the resolution
of the input image. This layers consist in a transposed
convolution that upsamples the previous feature maps. In
order to avoid the linear growth in the number of features
due to the upsampling paths, the input of a dense block
is not concatenated with its output and thus the transposed
convolution is applied only to the feature maps obtained by
the last dense block.

3) Image-to-Image Translation with Conditional Adver-
sarial Networks (Pix2Pix) [12]: These networks learn to

1https://github.com/shelhamer/fcn.berkeleyvision.org
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map an input image to an output image and the loss function
to train this mapping. They can be applied to multiple
tasks such as synthesizing photos, reconstructing objects
from edge maps or semantic segmentation among others.
The main advantage of this architecture is that it does
not rely on a manually fixed loss function that forces the
network to learn the task. The network is composed by a
generator G which produces outputs which ideally can not
be distinguished from the “real” images and a discriminator
D which learns to distinguish between the images generated
by G and the “real” ones. In order to overcome the losses
in resolution due to the progressive downsampling of the
features, they also use skip connections which consist of a
concatenation of all the channels from layer i with those
from layer n − i, where n is the total number of layers.
Moreover, they combine the the GAN objective with an
L1 distance to the ground truth in order to impose to the
generator to generate an output similar to the ground truth
2.

IV. DATASET

We present a publicly available dataset for water segmen-
tation in rivers [21]. It has been created using self-gathered
images, images retrieved from Google, and images from
surveillance cameras in riverbeds and labeled by a human
annotator. The dataset contains a total of 300 images of
different rivers. For every image there is the corresponding
ground truth file which consists of a two-dimensional binary
matrix of zeros for the pixels which contain background
information and ones for the pixels which contain water
information. In Figure 1 (a-c) we show some examples
of the images in the dataset, while in Figure 1 (d-f) the
corresponding water ground truth is displayed. Water regions
are represented in white and the background in black. The
dataset has a big variance among the images in terms of
water color, turbulence, angle, and illumination. In Table I
we report further information about the size of the images
from the dataset and the amount of water present in the
images.

Smallest image 118x158 pixels
Biggest image 2448x3264 pixels

Mean size of image 550x826
Min percentage of water 6.31%
Max percentage of water 91.37%
Mean percentage of water 39.57%

Table I: Meaningful information about the dataset.

V. EXPERIMENTS

We divided the dataset in 75% training and 25% in test.
For training We have used the default parameters suggested
by the authors for each algorithm.

We evaluate the results of the three algorithms on the test
set using two common semantic segmentation metrics, the

2https://github.com/phillipi/pix2pix
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Figure 1: Qualitative results from the river segmentation,
first row corresponds to the original image, the second is
the ground truth, the third is the result from the FCN-8s, the
fourth from the Tiramisu and in the last row from Pix2Pix.

Mean Intersection over Union (MIoU) and the pixel-wise
accuracy (Pa), which are given by:

MIoU =
(1/C)

∑
i nii

ti +
∑

j nji − nii
, Pa =

∑
i nii∑
i ti

,

where nij corresponds to the number of pixels from class
i which have been wrongly classified as belonging to class
j, nii represents the pixels from class i which have been
correctly classified, C is the total number of classes and
finally ti is the total number of pixels of class i. In Table II
we report quantitative results over the test set, specifically
statistic measures (mean and standard deviation) associated
with the two semantic metrics. The best results in terms of
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both mean IoU and accuracy are obtained by the Tiramisu
framework, which obtains over 5% better performance in
both metrics than the second best performing algorithm, i.e.,
Pix2Pix. Moreover, Tiramisu achieves the lowest standard
deviation, which suggests that the results are consistent
among the different images. In Table III we show the
best and worst performing algorithms on individual images
considering the previous two metrics. Again, Tiramisu is
the algorithm having the highest number of bests and the
lowest of worsts. In Figure 1 we show some qualitative
visual results: the results from Tiramisu seem to resemble
more the ground truth while the FCN-8s algorithm seems to
perform worst.

MIoU [%] Pa[%]
Mean Std Mean Std

FCN-8s 70.05 14.92 82.80 11.04
Tiramisu 81.91 13.74 90.47 9.16
Pix2Pix 72.25 14.27 84.7 10.05

Table II: Tiramisu algorithm obtains the best mean in both
metrics with lower standard deviation.

Number of images
MIoU Pa

Worst Best Worst Best
FCN-8s 37 6 37 7
Tiramisu 10 57 11 56
Pix2Pix 28 12 27 12

Table III: Tiramisu is the best performing algorithm: around
75% of the bests and less less than 15% of worsts, consid-
ering both metrics.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we have studied three state-of-the-art algo-
rithms for semantic segmentation and applied them to water
segmentation in rivers. We have introduced a new dataset
for water segmentation which we have used to train and test
the algorithms. Tiramisu was the best performing algorithm
for water segmentation, both quantitatively and qualitatively.
This work is particularly relevant for the implementation of
an automatic detection of water level increases using cam-
eras in riverbeds in order to improve flood early warnings.
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