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Introduction and Motivation



Edge detection

Over the last decades, a large number of edge detection algorithms have
been proposed making edge detection one of the main lines of research in
image processing. The interest in this topic comes from two main reasons:

Edge detection is a preliminary step in high-level operations such as
computer vision, pattern recognition or segmentation.
The abstract nature of the edge detection problem. Indeed, there is no
clear mathematical definition of what an edge is that is accepted by the
whole community. It is widely accepted that edges are the result of
human experience rather than a mathematical definition.
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Edge detection

There has been a lot of edge detectors proposed that rely on the most
different approaches and based on diverse theories.

Many edge detectors that rely on the most different approaches and
theories have been proposed over the last decades.
Some other approaches based on statistics, phase congruency and local
energy, vector oriented statistics...

However, up to now, there is no edge detector that is optimal for all kind of
images.
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The edge detection problem as a classification
problem
Among the different approaches for edge detection, a relatively unexplored
one is to understand the edge detection problem as a classification problem.
According to Canny’s restrictions each pixel must be classified as edge or
non-edge. Edge detection problems can be faced as binary imbalanced
classification problems.

(a) Original (b) Ground Truth

Figure: An image and its ground truth edge image.



Goals

The goal of this paper is to introduce a novel algorithm for edge detection
based on:

a logistic regression classifier trained using images with an available
ground truth, and
SMOTE technique as an oversampling method to handle the imbalance
among the two classes: edge and non-edge.

Also, we want to study the efficiency of this algorithm by comparing the results
with other well-known edge detectors.



Edge detector based on SMOTE and logistic
regression



Formula

The edge detector based on SMOTE and logistic regression computes a
probability image where the value of each pixel represents the probability to
belong to the edge class. The probability of a pixel x is computed by

πx(gh,gv ,gd1 ,gd2) =
ea1+a2·gh+a3·gv+a4·gd1+a5·gd2

1 + ea1+a2·gh+a3·gv+a4·gd1+a5·gd2

where ai with i ∈ {1, . . . ,5} are real constants and gh, gv , gd1 and gd2 are the
four 3× 3 Sobel directional gradients:



Formula
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Figure: Convolution masks used to compute the four 3 × 3 Sobel directional gradients.



Training stage

The performance of this edge detector depends obviously on the choice of the
real constants ai with 1 ≤ i ≤ 5. In order to choose good values of these
constants, a training stage has been performed.



Flow chart of the training stage

INPUT:
Image I
Ground truth
edge image
of I

Features Construction
For each pixel x of I

1 Compute its four 3× 3
Sobel directional gradients
(gh)x, (gv )x, (gd1)x, (gd2)x

2 Set

yx =

{
1 if x edge,
0 if x non-edge.

SMOTE
Synthetic features vectors belonging

to the edge class are created and
added to the set

{((gh)x, (gv )x, (gd1)x, (gd2)x, yx)|x ∈ I}

OUTPUT:
Estimates of ai
with 1 ≤ i ≤ 5

Logistic
Regression



Features construction phase

Let us compute the features vector of a given pixel.
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Features construction phase

Let us compute the features vector of a given pixel.
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Features construction phase

Let us compute the features vector of a given pixel.

(381,137,199,361,0)



Features construction phase

At the end of this phase, we have computed the set

{((gh)x, (gv )x, (gd1)x, (gd2)x, yx)|x ∈ I}.

This set of features vectors is very imbalanced with the edge class usually
representing around a 5-10%. Thus, ordinary classification algorithms are not
adequate and for this reason, we apply next the SMOTE technique.



SMOTE

The synthetic minority oversampling technique (SMOTE) is an oversampling
method to handle imbalance in highly imbalanced classification problems.

SMOTE oversamples the minority class by creating ”synthetic” examples
among the line segments joining a concrete minority class instance with
any/all of its k minority class nearest neighbors.



SMOTE

Once a minority class instance and one of its k minority class nearest
neighbors are selected, the synthetic instance is created as follows:

1 Take the difference between both feature vectors under consideration.
2 Multiply this difference by a random number between 0 and 1.
3 The previous result is added to the feature vector of the selected minority

class instance leading to a new synthetic instance belonging to the
minority class.
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Example SMOTE



Binary Logistic Regression

The model of the binary logistic regression is used to estimate the probability
of a binary response based on some independent variables.

We consider n independent observations y1, . . . , yn which are realizations of n
random variables Yi ∼ Ber(πi) for all 1 ≤ i ≤ n. In our case, given an image of
n pixels then

yi =

 0 if the pixel is a non-edge

1 if the pixel is an edge
for all 1 ≤ i ≤ n

where the information of what is an edge or not is given by the ground truth.



Binary Logistic Regression

Suppose that we can express the so-called logit function of the probabilities
as a linear combination of the 4 predictor variables, in our case the value of
the 4 Sobel directional gradients, {gh,gv ,gd1 ,gd2}. That is,

ln
(

πi

1− πi

)
= a1 + a2 · (gh)i + a3 · (gv )i + a4 · (gd1)i + a5 · (gd2)i = Si

for all 1 ≤ i ≤ n where a = (a1, . . . ,a5)
t is the parameter vector and

G = ((gh)i , (gv )i , (gd1)i , (gd2)i) ∈Mn×4 is a sample of the predictor variables.
The goal is to estimate vector a. Using maximum likelihood, we obtain the
log-likelihood function

l(a) =
n∑

i=1

(
yi · Si − ln (1 + eSi )

)
.

At this point, the estimates of a are obtained applying Newton-Raphson to the
non-linear equation system ∂l(a)

∂aj
= 0 for all 1 ≤ j ≤ 5.



Canny’s Restrictions

A logistic regression model generates an image containing for each pixel, the
probability to belong to the edge class.

However, Canny’s restrictions force an edge representation as a binary image
with edges of one pixel width.
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Proposed Algorithm

Thus, we need to apply to the probability image:

A thinning algorithm, as Non Maxima Suppression to obtain edges of
one pixel width,
A hysteresis algorithm, as the one based on the search of the instability
zone of the histogram, to obtain binary edges.
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Graphical Steps of the Algorithm

(a) Original (b) Probabilities

(c) NMS (d) Hysteresis

Figure: Images obtained in the intermediate steps of the edge detector.



Experimental results



Objective comparison
To evaluate objectively the obtained results, we have considered the quality
measure Q that is defined by

Q =

√(
|TP|
M
− 1
)2

+

(
|FN|
M

)2

+

(
|FP|
M

)2

+

(
F
M
− 1
)2

where
|TP|,|FN| and |FP| denote the number of true positives, false negatives
and false positives, respectively,
M = max{|TP|+ |FN|, |TP|+ |FP|}
F is defined as

F =

|TP|+|FP|∑
i=1

1
1 + 1

9 d2(i)

with d(i) the distance between the i-th edge pixel of the proposed result
and the closest edge pixel of the ground truth.

Smaller values of Q with 0 ≤ Q ≤ 2 indicate better capability of edge
detection.



Optimal training image

Firstly, we have set the optimal training image to establish our edge detector.
For this reason we have used the 50 images of the public image dataset of the
University of South Florida which contains the original images with their
corresponding ground truth images.

In order to pick up the best model among the 50 generated models (one for
each image of the dataset of the University of South Florida), we have applied
each one to the three images of the EUSFLAT 2017 Competition on Edge
Detection with their ground truth edge images available.

The best model of our edge detector in the three images of the competition
with available ground truth correspond to the model generated from image
131 of the dataset.
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Optimal training image

(a) Original (b) Ground Truth

Figure: Image 131 and its ground truth edge image of the dataset of the University of
South Florida.



Comparison with other edge detectors

We have compared our edge detector SMOTE-Reg algorithm versus:
Canny’s edge detector with σ ∈ {0.5,1.0,1.5,2.0},
Gravitational edge detector with the product and minimum t-norms,
Multiscale edge detector based on Gaussian smoothing and edge
tracking.



Results accoring to the measure Q

Edge detector Mean example1-1.jpg example1-2.jpg example1-3.jpg
SMOTE-Log 1.1499 1.0712 1.1413 1.2372

Canny σ = 0.5 1.3859 1.3874 1.2050 1.5654
Canny σ = 1.0 1.2191 1.1125 1.1626 1.3822
Canny σ = 1.5 1.2824 1.2109 1.2575 1.3787
Canny σ = 2.0 1.3715 1.3334 1.3493 1.4318

Gravitational Product 1.6475 1.5223 1.7123 1.7078
Gravitational Minimum 1.6855 1.6635 1.6828 1.7103

Multiscale 1.5314 1.4501 1.5746 1.5695

Table: Q values obtained by the considered edge detectors in the three images of the
EUSFLAT 2017 Competition on Edge Detection with available ground truth edge
images. The best Q values are depicted in bold.



Visual Comparison

(a) Original (b) Ground Truth (c) SMOTE-Log (d) Canny σ = 1.0

(e) Canny σ = 1.5 (f) Grav. Prod. (g) Grav. Min. (h) Multiscale

Figure: Results obtained by the considered edge detectors in image “example1-3.jpg”.



Visual Comparison

(a) Original (b) SMOTE-Log (c) Canny σ = 1.0

(d) Grav. Prod. (e) Multiscale

Figure: An original image and the results obtained by some of the considered edge
detectors.
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Conclusions and Future Work



Conclusions

We have proposed a new edge detector facing the problem of edge
detection as an imbalanced classification problem. Specifically, we have
trained a logistic regression model applying the SMOTE technique to
balance the two classes: edge and non-edge.
The results show that the algorithm is able to find most of the true edges
of the image discriminating them from false edge areas emerged by
illumination changes or textures.



Future Work

Consider other quantitative performance measures such as Pratt’s Figure
of Merit, the ρ-coefficient or the F -measure which can be adapted to
ground truth edge images with 3 zones such as the ones provided in the
dataset of the University of South Florida.

(a) Original (b) Ground Truth

Figure: An image of the dataset of the University of South Florida and its ground
truth with 3 zones.



Future Work

Explore several additional options in order to improve the results:
I Test other binary classifiers for imbalanced classification problems.
I Test modifications of the SMOTE technique.
I Consider another alternatives to oversampling techniques such as

cost-sensitive classifiers.

Compare our results with other recently-introduced edge detectors such
as the one based on the F1-transform or the fuzzy morphological
gradient.



Thank you for your attention!
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